
Standardizing the
ML Experimentation Process
Why You Need a Standard Approach to Achieve 

Reproducibility in ML and How to Get There



It’s Time to Standardize
Machine Learning Experimentation
This eBook is focused on defining the process and requirements for developing production-ready 
machine learning models. These recommendations are based on the insights from working with 
enterprise customers of every shape and size, and from our peers in the industry.
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THE CACE PRINCIPAL: WHY YOU NEED A STANDARD PROCESS FOR 
RELIABLE MACHINE LEARNING

As we all know, machine learning is used to address problems that cannot be well specified programmatical-
ly. Traditional software engineering allows strong abstraction boundaries between different components of a 
system in order to isolate the effects of changes[1]. Machine Learning systems on the other hand, are entangled 
with a host of upstream dependencies, such as the size of the dataset, the distribution of features within the 
dataset, data scaling and splitting techniques, the type of optimizer being used, etc. 

As a result, machine learning is highly susceptible to the CACE principle[1]:

Machine Learning is inherently an experimental and iterative science that requires the diligent tracking of mul-
tiple sources of variability. It is well known that reproducibility is an issue in many machine learning papers, and 
while steps are being taken to address these issues, as humans, we are often prone to oversight.

Changing Anything Changes Everything. In other words, a change anywhere in the machine learning process - 
especially those furthest upstream - will have an impact on your experiment and results.

The CACE Principle

WHY DOES THIS MATTER?
Imagine a team of ten data scientists, each working on a single modeling task with a target metric of accuracy, 
however:

• Three researchers label the target metric ‘val_acc’ 
• Three label it ‘accuracy’ 
• Four label it ‘score’ 

How would you compare the results across experiments? It may be feasible to work this way for a week, but 
what about in six months? 

These seemingly innocuous problems become real headaches down the road, and can result in tremendous 
amounts of time lost simply trying to retrace steps.
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Because ML systems lack a clear specification, because data collection is an imperfect science, and because 
effective machine learning models can be incredibly complex, experimentation is necessary.

The goal of the experimentation process is to understand how incremental changes affect the system. 
Rapid experimentation over different model types, data transformations, feature engineering choices, and 
optimization methods allows us to discern an image of what is and isn’t working. 

Andrew Ng’s team at Landing AI suggest using 1 Day Sprints when developing ML Systems[3]. These Sprints are 
organized in the following way:

1. Build models and write code each day
2. Set up training and run experiments overnight
3. Analyze results in the morning

4. Repeat

Given the pace of these iterations, the need to automate the logging process starts to become more clear. 
Automated logging is less prone to clerical error, such as mistakenly writing down the wrong random seed or 
the wrong CUDA version, and serves as a reliable source of truth further down the line. Debugging models in 
production is much easier when we have a reliable traceback of the training process that created them.  

Adoption of an experimental paradigm involves two key behaviors. Behaviors that are critical to delivering 
consistent, repeatable, and production-ready machine learning models:

• Keeping track of all experimental metadata—code, metrics, hyperparameters, datasets, samples, 
predictions, visualizations, models, etc., 

• Logging everything to a central repository in a systemized way that enables comparative analysis.
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Keeping track of experimental metadata is simply the starting point for adopting a consistent and repeatable 
experiment process. There are other critical steps that, when adopted, enable data scientists and data science 
teams to achieve this consistency as part of the process, rather than an afterthought. These steps include:

• Defining and Documenting the scope and success criteria of your project

• Creating dumb baselines

• Understanding and Validating data

• Data pre-processing & feature engineering

• Iterating over different types of models

• Hyperparameter search & fine tuning 

• Serving the model

• Monitoring model performance in the wild

Standardizing Experimentation

STEP 1: DEFINE AND DOCUMENT THE SCOPE AND SUCCESS CRITERIA 
FOR YOUR PROJECT

This is the most crucial step in the process. Before writing any code or looking at any data, you must be able to 
clearly state and quantify the scope of success for your project. 

Here are some of the types of questions you might want to answer at this stage of the process: 

• What business objective is your model trying to achieve? 

• What are your KPIs for this task? 

• What is the specific task that you are trying to automate with Machine Learning?

• How will your users interact with this model?

• What is the input to this system?

• What is the expected output?

• How will you measure that your model is actually working? 

• How do we know if we can trust these predictions? 

• How important is it for the model to be interpretable?

• Where will this model be deployed? On-premises? Cloud? Mobile?

• What information will be exposed to the user? 

• How much variance in predicted output can be tolerated? 

• What are the proxy metrics will we use to evaluate the system’s performance? 

• What are the latency requirements for the predictions?

• Is there a risk for our model or data to be biased? If so, how can we detect this?

• What are the proxy metrics will we use to evaluate the system’s performance? 

• What are the latency requirements for the predictions?

• Is there a risk for our model or data to be biased? If so, how can we detect this? 
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Answering these questions will involve talking to the various stakeholders for your project and developing a 
shared understanding of the objective of your model, and the evaluation process for the model. 

STEP 2: SET UP DUMB BASELINES

Once you have your task and evaluation metrics defined, it may be tempting to hit the ground running and start 
trying different models on the data. 

This is a recipe for endless suffering[3]. Yes, that’s right. Endless suffering.

The model is a small part of a much larger system, and is often the easiest part to update. Before creating a 
model, we must ensure that our evaluation framework is sound and behaves in the way that we expect it to. 

We can think of this phase of the process as developing the scaffolding for our entire training and evaluation 
pipeline. The scaffolding should allow us to validate our hypotheses quickly, identify blind spots in the metrics 
we initially selected in Step 1, and come up with reasonable points of comparisons for our future models. 

One critical consideration and set of parameters that must be documented are the restrictions your 
model will have if and when it goes to production. These restrictions can be CPU, storage, etc. Defining and 
documenting these restrictions, then building your model with that context in mind, is a major factor in if 
your experiment will be successful in the wild.  

If these considerations are not taken into account, you might end up with an excellent model that can’t be 
deployed anywhere.

Pro Tip: Preparing Machine Learning for Production

Figure 1.  A schematic of a typical machine learning pipeline
(Source: https://developers.google.com/machine-learning/testing-debugging/pipeline/overview)
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In this phase, we need to run multiple experiments that are computationally cheap to evaluate and do not take 
much time. 

Some of the types of experiments that you can run in this phase include:

• Simulating the model predictions with a heuristic

• Simulating the model predictions using random sampling

• Using an Oracle Model (a mock of the model that makes perfect predictions)

These experiments will help us understand how our model’s predictions affect the KPI that we care about. The 
Oracle approach in particular, will help clarify whether a model can improve your system at all. You may find 
that even a perfect set of predictions does not affect your KPI in any meaningful way. 

Some other questions to consider at this stage are:

• What do the metrics look like when using a heuristic? 

• How close does the heuristic get us to our KPI? Is the gap big enough that we can justify using 
machine learning to make up the difference? 

• How close must our model performance be to the Oracle performance in order to positively affect 
our KPI?  

• If the Oracle model is unable to affect our KPI, do we need to change our approach? Do we need to 
rethink the target variable that we are trying to predict?

• Do we need to change how our model interacts with the rest of the system or with our users?

Answers to these questions will give us an indicator for the kind of performance that we are expecting from our 
model. 

Suppose our heuristic is the ability to accurately predict our target value 65% of the time, which produces a 2% 
increase in our KPI. The predictions from our Oracle are 100% accurate and provide a 10% increase in our KPI. 

We now know that increasing model accuracy positively affects our KPI.  We also know that we need a model that is 
accurate more than 65% of the time in order to justify putting this system into production.  

Why does this matter?

In this phase of development, we are verifying whether an ML solution is necessary, and establishing trust in our 
evaluation framework. We want to make sure that optimizing our proxy metrics positively affects the KPIs we 
care about.  

If possible, deploy a proxy for your model, e.g. a heuristic-based approach, on production data in shadow mode 
(i.e. the predictions are not actually used). This is a way to characterize the types of errors that your simple 
model will make, which can inform further model improvements [6].
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This is also an opportunity to monitor the type of data you are expecting your model to consume. 
Understanding how this data changes over time will give an idea of how often this model will have to be 
retrained.

This step assumes that you already have data available for your model. 

During this phase of the development process, it is important to familiarize yourself with the data. It is well 
worth the time to scan through a hundred individual examples to identify outliers, corrupted samples, and 
other irregularities that may not be easily detectable through statistical tests. 

The types of information you might want to extract from these experiments are:

• The number of examples in the dataset

• The number of features in the unprocessed dataset

• Statistics about the initial features in your data

• The number of categorical features

• The number of numerical features

• Identify missing data

SHADOW MODE 
DEPLOYMENT
Forgo some of the technical rigor in order 
to make first full iteration quickly

Define Task

Collect Data

Model 
Exploration

Model 
Refinement

Testing and 
Evaluation

Deployment 
and 
Integration

Monitor and 
Maintain

Figure 2. Using shadow deployments for further model understanding

STEP 3: UNDERSTAND AND VALIDATE YOUR DATA

(Source: https://www.jeremyjordan.me/ml-requirements/)

https://www.jeremyjordan.me/ml-requirements/
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• Identify incorrectly labelled data

• If it is a supervised learning problem, profile your target distribution. 

• In the case of a regression problem, log summary statistics of the target distribution. 

• For a classification problem look at the frequency distribution over the number of classes to 
check for imbalances

• Check if your target distribution needs to be transformed (log scaling, min-max scaling, etc)

• Check if your features need to be scaled 

• Check for outliers in the target. 

• Are there special considerations to take when creating splits so that there isn’t any data leakage 

between training and validation sets. 

• Are there any underlying biases in this data that the model might inadvertently pick up? For 

example, classify an object as a boat based on the presence of water in the image. 

• Validate the assumptions about your target value. 

• Does it fall within a certain range? If not, identify why that is

• Do the class distributions make sense? 

• Is the data meeting privacy guidelines? Does it contain personally identifiable information?

• What was the process used to collect this data? Are there ethical issues with using this data?

Once you have performed these experiments on the data, you are ready to build a schema for your dataset. A 
schema will encode these extracted intuitions about the data so that they can be automatically checked when 
new data becomes available [2].  

Another crucial step is to develop a datasheet for your data in order to address aspects of the data that cannot 
be conveyed through a statistical summary. A datasheet  documents the motivation, composition, collection 
process, recommended uses, and applicability of the data [6]  

Let’s say a feature in your unprocessed dataset might only contain NaN values, so as part of your feature 
engineering pipeline, you remove it. A few months later, new data comes in and this feature is no longer filled with 
NaNs. However, since your pipeline is dropping this feature, you never detect the change. 

By testing against a data schema, we provide our system with a way to signal that your pipeline might have to be 
revisited. 

Why does this matter?

To construct the schema, start with calculating statistics from the training data, and then adjust them as 
appropriate based on the information extracted from the experiments mentioned above. [2]
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We recommend automating the dataset profiling and schema construction steps. Your profiling script should 
capture and log the relevant metadata and use it to build the schema. We will consider a single execution 
of this script over the data as an experiment. Make sure your experiments have unique identifiers. It is best 
to automatically generate an identifier when executing the script, rather than manually creating one for the 
experiment after a run.

Pro Tip: Use Automation Where Possible

We can now reference this experiment id within the schema and track changes to it using git. Rerunning the 
profiling script on fresh data should create a new schema that references the new experiment.       

For tracking changes to the data pipeline we suggest using tools like DVC or Pachyderm. 

Based on the information gathered from Step 3, we are now ready to get started with preparing the data for our 
model. 

Model performance is tightly coupled to the data and our selection of preprocessing steps will have a huge 
impact on the final results. There may be numerous transformations that are beneficial to the model, some of 
which might be known beforehand, while others might only reveal themselves after a few iterations. 

For this step, we recommend first splitting all your available data into training, validation, and test sets, and log 
the indices of the examples in each split. You can check for the quality of your splits against your data schema in 
order to confirm that each split is representative of your entire dataset. 

We also recommend sampling from these splits to create smaller versions of your dataset. Remember, we 
want to rapidly test as many feature engineering ideas as possible, so we don’t want to wait around for our 
experiments to run over all the available data.   

In Step 3, we identified the features that need further processing. In this step, we will develop multiple versions 
of features for the model using different preprocessing techniques. Depending on the scale of your pipeline, it 
might be worth investing in a dedicated feature store so that computationally heavy features can be stored and 
reused across experiments and teams.       

The types of experiments at this stage will depend on the task.  For example, if we were building a topic model 
for a large corpus of news articles, we might want to investigate the effect of vocabulary size on the model’s 
ability to separate topics. 

To do this, we would run multiple experiments with our feature extraction pipeline to turn the raw text data into 
numerical features, vary the size of the allowed vocabulary between experiments, and store the results from 
each experiment run. This would result in multiple sets of features that represent different vocabulary sizes. 
Structuring feature engineering in this way will allow us to treat each  transformed data as a hyperparameter 
when running modelling experiments. 

STEP 4: DATA PREPROCESSING / FEATURE ENGINEERING



At this stage of development, we will run multiple experiments that:

• Perform outlier removal on the target

• Perform scaling on the target

• Perform scaling on the features

• Min-Max Scaling
• Standard Scaling 

• Encode categorical variables

• Word2Vec

• GLoVE

• One Hot Encoding

• Create new features from existing features

• Combine features from other datasets 

• Resizing images to a fixed size 

• In the case of images, apply different augmentation techniques, such as flipping, rotating, gray 
scaling etc.  

1. A target value for our proxy metric (accuracy, roc score, etc) and KPI

2. An idea of the performance of simple heuristic methods on our task

3. An idea of any irregularities in the raw dataset or in the computed features

4. An idea of any irregularities in the target 

5. A small representative sample of the train, validation, and test data to develop the model against 

6. A set of precomputed features created by running different versions of a feature extraction pipeline 
on the sampled data from Step 5.

Machine Learning development is iterative, and the results from later stages in the pipeline are informed by 
decisions in the earlier stages. 
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STEP 5: ITERATE OVER DIFFERENTS TYPES OF MODELS



Start this process by trying the simplest model for your task, e.g. a Linear or Logistic Regression model. Run an 
initial set of experiments through this simple model in order to verify that your training and evaluation setup 
is working as expected. Ensure that you set and log a random seed for your experiments, as this will help with 
reproducing the results. Through these experiments, we are trying to verify the following:

1. Is the data being loaded in the correct way for the model to consume?

2. Are all the relevant metrics for this modelling task being logged? Do new ones have to be defined?  

3. Are the splits in the datasets valid? Is there any leakage between the training and validation sets? 

4. Can the results be reproduced when rerunning the same experiment? Are there any discrepancies 
caused by incorrectly setting the random seed somewhere?

5. Do the label and prediction match up perfectly 

Once we are confident that the training and evaluation framework is trustworthy, we can start slowly ramping up 
the complexity of the model. 

Start trying boosted trees, Gaussian Processes, Neural Nets, etc. Try using off the shelf configurations for these 
models, and do not use any sort of regularization at this stage. The first set of experiments you should run with a 
new model type should be to see if the model can overfit the training data. 

Let us say that you have sampled 1000 examples from your dataset, which contains a total of 10000 training 
samples. Run your feature engineering pipeline on these samples and then try to overfit your model on these 
1000 samples. Iterate over the different versions of your features to see which ones are most significant to each 
model.  

Compare the training metrics across model types and features to verify which types of models have the capacity 
to learn from the data at all. 
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Figure 3. Machine Learning Development Workflow

(Source: https://docs.google.com/presentation/d/1mvmJ1PnCe7lWGmSoL80CjLe7N2QpEwkU8x7l62BawME/edit#slide=id.p4)

https://docs.google.com/presentation/d/1mvmJ1PnCe7lWGmSoL80CjLe7N2QpEwkU8x7l62BawME/edit#slide=id.p4


Once you are able to find a set of models that can overfit the training data, start trying regularization approaches 
to drive up your validation metrics. For your regularization experiments, you should first investigate the effects 
of scaling the amount of data on your model. Track how the training and validation metrics for each model type 
change as more samples are added to the training set.   

Some other approaches that can be taken here:

1. L1 and L2 regularization

2. Early Stopping

3. Dropout

Select the best set of model and feature combinations from this initial set of experiments, and confirm once 
again that they meet the requirements defined in Step 1. For example, you may find that a Neural Network is 
best suited for your task, but the size of the model is too big to deploy on a mobile application, so you might want 
to rethink using this model, or consider some sort of pruning strategy. 

These initial set of models will now move onto further development. At this stage, we should have an idea of 
which set of features work best for our task and selected model types. 
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Let’s take the case of a Neural Network. You may want to try to train it on a single datapoint, or a single batch. 
Ensure that you are able to get an error close to 0, and check if the prediction and labels align perfectly.[4] 

If this isn’t the case, there might be something wrong with your model architecture. You can debug this by logging 
the weights, gradients, and activations in the model, and inspecting whether or not these are changing over the 
training process. 

Why does this matter?

At this stage, you should have an idea of the types of models that are able to fit your data, the features that work 
best for each model type, and the effects of scaling the data on each candidate model type.

We are now ready to start tuning our model hyperparameters. One way to speed up this process is to use the 
sampled dataset to quickly iterate over different hyperparameters configurations. This is highly dependent on 
whether you can get a representative sample of your dataset. If the data is complex, this can be much harder. 

One workaround is to investigate the effect of how adding more data affects the performance of the top N 
hyperparameters determined from the sampled data. N is determined based on the compute resources that are 
available. In order to avoid overfitting to the sampled dataset, we also suggest building multiple validation sets by 
sampling from the full validation set. We can use the average of the results from each set as an indicator of the 
performance of the hyperparameters on the entire validation set.

STEP 6: HYPERPARAMETER SEARCH AND FINE TUNING



Start with a simple search algorithm like Random Search. In general, Random Search is a hard to beat baseline, 
although depending on the problem, you may opt to use Bayesian Optimization methods further down the line 
when you have narrowed down your search space. 

An iterative search strategy is usually the most effective way to tune your hyperparameters. Start with a wide 
range for each hyperparameter, and sweep a coarser search space. Use discrete values for the parameter 
options, even if your hyperparameter is a continuous variable, such as the learning rate, or momentum, it is 
much more efficient to narrow down the range of values before trying to search a continuous parameter space. 

Once you have a set of hyperparameters that work well with your data, you may choose to further fine tune your 
approach by trying ensembles using the top performing models, letting your model train for an extended period 
of time, further optimize the hyperparameters of your feature engineering pipeline, etc. 
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The final step of our experimentation involves deploying the model to the end user. At this stage, you should 
already have an evaluation framework in place for assessing the models performance, and should have already 
run some baseline heuristic models through the framework. 

Opt to use a canary deployment, or a shadow deployment initially, and monitor your model’s performance 
metrics. Some of the things that you may find at this stage are:

1. The model needs further refinement in order to work with production data.

2. The data is experiencing drift at a much faster rate than initially anticipated, so the training pipeline 

might have to be retriggered more frequently. 

3. How does the model handle edge cases, or outliers?

STEP 7: SERVING
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We define reproducibility to mean recreating the exact results reported by the original author [8]. Previous works 
have proposed formal criteria to distinguish between terms such as replicability, and robustness, that are often 
used interchangeably with reproducibility [9, 10]. 

Whitaker et al. adopt the terminology where reproducible work means to recreate results using the same data 
and tools. Replicable work means to arrive at similar results with different data, for example, a proposed image 
classification model achieves the best test accuracy on a baseline dataset as well as other image datasets with 
similar class distributions. Robust work means to achieve similar results using the same data, but changing 
aspects of the tools (changing an implementation of a model, or changing the model framework). Generalizable 
work means to arrive at similar conclusions based on different data and different tools, for example the Adam 
Optimizer appears to work well across model architectures, and datasets.        

Tatman et al. create a taxonomy to quantify the degree to which a project is reproducible [8]. Each type of 
reproducibility can be characterized by a score of high, medium, or low based on the provided artifacts. We 
expand on this work and provide a checklist of artifacts that allow us to determine the degree of reproducibility 
of a machine learning project. 

WHAT IS REPRODUCIBILITY?

Achieving Reproducibility

Code, Parameters, 

Environment, Analysis

Same

Reproducible

Robust

Same

Different

Replicable

GeneralizableDifferent

Data

Table 1. Reproducible Research. Adapted from:

https://github.com/WhitakerLab/ReproducibleResearch 

https://github.com/WhitakerLab/ReproducibleResearch
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Low Medium High

Artifact

Description of the Model

Description of Model Hyperpa-
rameters

Description of the Dataset

Description of
Preprocessing Steps

Description of Training Steps

Documented Experimentation  
Methodology

Uncertainty Quantification of 
Reported Metrics

Random Seed

Source Code

Dataset

Software Environment Informa-
tion is Provided (Dependencies, 
OS, etc)

Compute Requirements in CPU/
GPU days and Cost are defined

Hardware Requirements are 
provided (CPU/GPU Type, GPU 
Memory)

Table 2: Checklist of artifacts that allow us to determine the degree of
reproducibility of a machine learning project.
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Reproducibility is the linchpin to all machine learning success. It is a prerequisite when it comes to establishing 
trust in a model and its predictions. The more people that can run your algorithm and verify the results, the more 
confident you can be that your methods are sound. More importantly, having others validate your approach 
brings transparency and credibility to your work.    

When other people are able to replicate and understand your work, they can extend it and build new things. 
Practices such as version control, continuous integration and unit testing allow developers to build upon each 
other’s work, while maintaining visibility into the entire process.

Reproducibility allows us to build better baselines. In order to progress on any task, we need to be able to 
compare our approach to established methods. If we cannot reproduce the results of existing techniques, 
then we have no way of knowing whether we are actually moving forward. There are also times when it is not 
possible to rerun someone else’s work due to factors like private datasets, extensive training time, or non-
standard computing infrastructure [9]. In these cases, we can only evaluate the work by comparing it to a known 
reproducible baseline. Unreliable baselines can result in too much time spent on explorations of unpromising or 
incorrect techniques. This represents wasted resources that could be better put to use elsewhere.

Machine learning is an iterative process involving many variables. Manually tracking the entire process is an 
unreasonable and error prone burden. Most of the hidden technical debt [1] surrounding machine learning 
systems involves some form of tracking, whether it be metrics, dataset distributions, or hardware details, and it is 
in our best interest to automate this process as much as possible.

In this regard, the machine learning community can benefit tremendously from best practices employed in 
Software Engineering. Rapid iterative and reproducible workflows in software engineering are achieved by 
leveraging automated tools such as Github, and CI. We should think of our experiments as software engineering, 
and adopt these best practices that are designed to facilitate collaboration [14]. Use version control with your 
source code. Make use of pull requests, CI tools and containers, if possible, to run your experiments. Automate 
the process of tracking your experiment parameters, metrics, models, and compute environment.

Machine Learning is inherently non-deterministic. Below, we list a few factors that inject non-determinism into 
the experimentation process. These factors tend to change over the course of the model development process 
and their effects are subtle and hard to detect unless properly logged.

1. Random Seeds used for things such as parameter initialization, data splitting, data shuffling, dropout 
regularization, etc. 

2. Changes in Machine Learning frameworks, and default values in source code. 

3. Non determinism of floating point calculations in GPUs.  

4. Differences in hardware (CPU type, GPU type)

5. Difference in software dependency versions (sklearn 0.19.0 vs 0.21.0)

WHY IS IT IMPORTANT?

TOWARDS REPRODUCIBLE WORKFLOWS

WHY IS IT DIFFICULT?
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The reproducibility crisis in machine learning is well documented and is a serious barrier to future progress 
[11,12,13,15]. It stifles collaborative experimentation since it prevents anyone from being certain about the claims 
made, and makes new ideas harder to try out. It also makes it difficult to transition models from development to 
production, because no one wants to use a model they can’t understand or rebuild.   

Reproducibility is a kindness to your future self and everyone else who might want to build upon your work [14] 
-- and that is a great goal all on it’s own.
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