Skip to content

Use the model registry

Comet has a sophisticated system for logging, registering, versioning, and deploying machine learning models. A model can be anything you want it to be---Comet makes no assumptions of what comprises a model.

The general steps in creating a Comet model pipeline are:

  1. Log a model using a Python SDK Experiment.
  2. Register an Experiment model.
  3. Track model versions of the registered model.
  4. Deploy a registered model.

These steps are described in detail in the following sections.

Log a model

To Comet, a model can be composed of any files or folders in the file system. That is, a model can be any collection of files.

The first step in the model pipeline is to log all of the associated files with a model name through an Experiment (for example, Experiment, OfflineExperiment, or ExistingExperiment).

If all of the files connected to a model are in a single folder (and all of the files there are related to the model), you can simply log the model with the path to the folder:

from comet_ml import Experiment

experiment = Experiment()

experiment.log_model("MNIST CNN", "../models/run-026")

However, if the files that compose a model are separated, you can also log each file individually:

from comet_ml import Experiment

experiment = Experiment()

experiment.log_model("NLP Model", "run4/layer1-weights.pickle")
experiment.log_model("NLP Model", "run6/layer2-weights.pickle")
experiment.log_model("NLP Model", "run9/layer3-weights.pickle")

In fact, you can also log multiple folders and multiple files as a single model. For more information, see Experiment.log_model().

After you log a model, you will see the model and all of its individual files in the Experiment's Assets tab.

Project View

From the Experiment's Assets tab, you can download the model, see if it has been registered before, or register it as a new model, or a new version of an existing model. Details of that process follow.

You can see exactly the registry models that have been made with this Experiment model by clicking the View Existing link next to the asset model entry.

Project View

Clicking the name of the registered model takes you to the Registry view.

Register a model

After you log a model through an Experiment through the SDK, you can then register it. Registered models belong to a workspace, and are shared with your team there.

You can register an Experiment's model in two ways:

  1. Through the Experiment's Asset tab in the Comet UI.
  2. Programmatically through the Comet Python SDK.

To register an Experiment's model in the Comet UI, simply go the Experiment's Asset tab, locate the model in the asset list, and click the Register link.

If no model has been registered before in this Workspace, you see the following dialog:

Project View

Here, you can give the registered model a name, a version, and set its visibility to Public or Private. Note that registered model names must be all lowercase, and version strings must use proper semantic versioning. Semantic versioning are strings like "1.0.0", "2.1.5", or "1.0.0-alpha". For more examples of "semver", see, for example, Understanding Semantic Versioning Specification.

On the other hand, if you have registered a model in this Workspace before, you see the following dialog:

Project View

Here, you select one of the previous registered model names from the list, and again provide proper semantic versioning. Click Register New Model.

You can also register an Experiment's model through the Python API. That would look similar to:

from comet_ml import API

api = API()

experiment = api.get("workspace-name/project-name/experiment-name")
experiment.register_model("MNIST CNN")

That's it! The "MNIST CNN" is the name of the Experiment model, and if you don't provide a registry model name, it will serve as the foundation for it as well. However, since registered model names have more constraints than Experiment model names, the registered model name becomes "mnist-cnn". Likewise, since we did not provide a version number, the string "1.0.0" was used as the default.

For more details, see: APIExperiment.register_model().

Details of your registered models follow.

Track model versions

Registered models belong to the workspace. In this manner, you can share your models with the workspace team. At the workspace view, you can select between viewing the Projects or the registered models.

Project View

Selecting a registered model's card in the Model Registry takes you to the detailed view of the registered model.

Project View

Here you can see the latest version of the registered model, and all previous versions as well. Registered models contain the following properties, which can all be edited here:

  • registered name
  • description
  • visibility setting (public vs. private)
  • notes

You can edit these properties by clicking the Edit Model button.

You can also alter these settings programmatically using the Python API:

api.update_registry_model(workspace, registry_name,
                          new_name=None, description=None, public=None)
api.update_registry_model_notes(workspace, registry_name, notes)

Each version of a registered model contains the following items:

  • semantic version string
  • comment
  • a list of stages, such as "production" or "development"

The stages is a list of tags. You can add to, or delete tags from the versioned registered model on this page.

You can programmatically update these items using the Python API:

api.add_registry_model_version_stage(workspace, registry_name, version, stage)

api.update_registry_model_version(workspace, registry_name, version,
                                  comment=None, stages=None)

From the Registry Model view, you can also delete a version by clicking the delete icon.

Programmatically, you can delete these as well:

api.delete_registry_model(workspace, registry_name)
api.delete_registry_model_version(workspace, registry_name, version)

Deploy models

To download a registered model as a zip file, click the Get Model button. The zip file contains all of the files that were logged with the Experiment model through the Python SDK.

Project View

You can download the latest versioned registered model, or any of the versions. Simply click on their download icon.

You can also download and deploy your model programmatically, using the Python API:

from comet_ml import API

api = API()

experiment = api.get("workspace-name/project-name/experiment-name",
                     output_path="./", expand=True)

# Download an Experiment Model:
experiment.download_model("Model A", output_path="./", expand=True)

# Download a Registry Model:
api.download_registry_model("workspace-name", "model-a", "1.0.0",
                            output_path="./", expand=True)

You can select where you would like to download it to using the output_path parameter (using a relative or an absolute path), and determine if the zip file is expanded or not using the expand parameter.

May. 24, 2023