comet_ml.integration.vertex ¶
CometVertexPipelineLogger ¶
CometVertexPipelineLogger(
api_key: Optional[str] = None,
workspace: Optional[str] = None,
project_name: Optional[str] = None,
packages_to_install: Optional[List[str]] = None,
base_image: Optional[str] = None,
custom_experiment: Optional[comet_ml.CometExperiment] = None,
share_api_key_to_workers: bool = False,
)
Creates a local experiment for tracking vertex pipeline work and provides an API to track vertex tasks with their own Comet experiments.
Parameters:
api_key
(Optional[str]
, default:None
) –Your Comet API Key, if not provided, the value set in the configuration system will be used.
project_name
(Optional[str]
, default:None
) –The project name where all pipeline tasks are logged. If not provided, the value set in the configuration system will be used.
workspace
(Optional[str]
, default:None
) –The workspace name where all pipeline tasks are logged. If not provided, the value set in the configuration system will be used.
packages_to_install
(Optional[List[str]]
, default:None
) –Which packages to install, given directly to
kfp.components.create_component_from_func
. Default is["google-cloud-aiplatform", "comet_ml"]
.base_image
(Optional[str]
, default:None
) –Which docker image to use. If not provided, the default Kubeflow base image will be used.
custom_experiment
(Optional[CometExperiment]
, default:None
) –The Comet Experiment with custom configuration which you can provide to be used instead of Experiment which would be implicitly created with default options.
share_api_key_to_workers
(bool
, default:False
) –If
True
, Comet API key will be shared with workers by setting COMET_API_KEY environment variable. This is an unsafe solution and we recommend you to use a more secure way to set up your API Key in your cluster.
Example
1 2 3 4 5 6 7 |
|
track_task ¶
track_task(
task: Any, additional_environment: Optional[Dict[str, str]] = None
) -> Any
Inject all required information to track the given Vertex task with Comet. You still need to create an experiment inside that task.
Parameters:
task
(Any
) –The Vertex task to be tracked with Comet.
additional_environment
(Optional[Dict[str, str]]
, default:None
) –A dictionary of additional environment variables to be set up in the tracked task.
Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
comet_logger_component ¶
comet_logger_component(
api_key: Optional[str] = None,
project_name: Optional[str] = None,
workspace: Optional[str] = None,
packages_to_install: Optional[List[str]] = None,
base_image: Optional[str] = None,
custom_experiment: Optional[CometExperiment] = None,
) -> Any
Inject the Comet Logger component which continuously track and report the current pipeline status to Comet.ml.
Deprecated: Use comet_ml.integration.vertex.CometVertexPipelineLogger instead.
Parameters:
api_key
(Optional[str]
, default:None
) –string, optional. Your Comet API Key, if not provided, the value set in the configuration system will be used.
project_name
(Optional[str]
, default:None
) –string, optional. The project name where all pipeline tasks are logged. If not provided, the value set in the configuration system will be used.
workspace
(Optional[str]
, default:None
) –string, optional. The workspace name where all pipeline tasks are logged. If not provided, the value set in the configuration system will be used.
packages_to_install
(Optional[List[str]]
, default:None
) –List of string, optional. Which packages to install, given directly to
kfp.components.create_component_from_func
. Default is ["google-cloud-aiplatform", "comet_ml"].base_image
(Optional[str]
, default:None
) –string, optional. Which docker image to use. If not provided, the default Kubeflow base image will be used.
custom_experiment
(Optional[CometExperiment]
, default:None
) –Experiment, optional. The Comet Experiment with custom configuration which you can provide to be used instead of Experiment which would be implicitly created with default options.
@dsl.pipeline(name='ML training pipeline')
def ml_training_pipeline():
import comet_ml.integration.vertex
comet_ml.integration.vertex.comet_logger_component()
initialize_comet_logger ¶
initialize_comet_logger(
experiment: CometExperiment,
pipeline_job_name: str,
pipeline_task_name: str,
pipeline_task_uuid: str,
) -> CometExperiment
Logs the Vertex task identifiers needed to track your pipeline status in Comet.ml. You need to call this function from every component you want to track with Comet.ml.
Deprecated: If you are using comet_ml.integration.vertex.CometVertexPipelineLogger.track_task, you don't need to use this function anymore.
Parameters:
experiment
(CometExperiment
) –An already created Experiment object.
pipeline_job_name
(str
) –The Vertex pipeline job name, see below how to get it automatically from Vertex.
pipeline_task_name
(str
) –The Vertex task name, see below how to get it automatically from Vertex.
pipeline_task_uuid
(str
) –The Vertex task unique id, see below how to get it automatically from Vertex.
Example
1 2 3 4 5 6 7 8 |
|